

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 75

New articles in this journal are under a Creative Commons Attribution 4.0 United States License. This journal is published by the University Library
System of the University of Pittsburgh as part of its D-Scribe Digital Publishing Program and is cosponsored by the University of Pittsburgh Press.

Research

Rethinking Computational Thinking for
Public Libraries’ Youth Programs

Challenges and Recommendations

Marissa Guidara
Marissa Guidara is District Library Youth Services Consultant at Reading Public Library, marissa.guidara@gmail.com

Computational thinking has become a popular and important concept in education
throughout the nation. Public libraries, with their technology services and their role as an
informal learning space, have been tagged as an ideal place for computational thinking
learning for children. However, the literature and research surrounding computational
thinking is often vague and even misleading, presenting differing visions of what
computational thinking is, what it should look like in practice, and how it might be evaluated
for effectiveness. As a result, youth services librarians face many challenges in their
attempts to understand, design, and evaluate computational thinking programs for their
libraries. This paper explores the issues inherent in current computational thinking research
and discusses the challenges they represent in designing and facilitating youth
computational thinking programs in public libraries, as well as presents recommendations
for best practices.

Introduction
Computational thinking has become a popular term in recent years, a buzzword that just as easily finds its

way into parenting magazine articles as it does academic research. It is being touted as a new “literacy” (Snelling, 2018)
and as a “fundamental skill used by everyone in the world by the middle of the 21st century…as fundamental as reading
writing and arithmetic. The third pillar of the scientific method” (Wing, 2016).

The notion of computational thinking as a fundamental skill for the future has not gone unnoticed by
governments, educators, and big businesses who are looking for ways to prepare children for the technology and
economy of the future. In 2016, President Obama announced the “Computer Science for All” initiative, which
“identified STEAM (science, technology, engineering, and math) learning and computer science as national priorities
for all age groups” (Prato, 2017, p. 19). A year later, Google announced $500,000 worth of grants for libraries interested
in participating in its Libraries Ready to Code initiative (Braun & Visser, 2017).

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
mailto:marissa.guidara@gmail.com

Pennsylvania Libraries: Research & Practice
Rethinking Computational Thinking for Public Libraries’ Youth Programs

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 76

palrap.org

Despite the call to arms for computational thinking education, schools are not flying the banner. According
to Prato (2017), “nine in ten parents want their children to study computer science, but only one in four schools teach
computer programming” (p. 21). It is public libraries and youth services librarians who are being asked to fill this gap
because of their role as informal learning spaces (Martin, 2017), the free access they offer to technology and internet,
and in turn, their already established commitment to bridge the digital divide (Braun & Visser, 2017). With so much
money and attention being thrown in the direction of computational thinking, it is no wonder that libraries are
attempting to take up the call to promote and facilitate these types of programs.

However, while many youth services librarians begin to develop computational thinking programs for their
patrons, several major challenges arise with the very concept of computational thinking. While research and literature,
library blogs and workshops, enthusiastically tell youth services librarians they should offer this, there is little
consensus on what “this” is or what it looks like. Computational thinking literature “is at an early stage of maturity,
and is far from either explaining what [computational thinking] is, or how to teach and assess this skill” (Kalelioglu,
Gulbahar, & Kukul, 2016, p. 583).

As a whole, the body of computational thinking research contains varying definitions of computational
thinking, makes claims about the benefits of computational thinking that have yet to be substantiated, and provides
inconsistent visions of what computational thinking programs should look like. Basic questions like, “What is
computational thinking?” and “What does it look like in practice?” do not have easy answers. This paper examines the
challenges facing youth services librarians as a result of these issues inherent in computational thinking research and
recommends best practices that consider the unique space of the public library for moving forward.

Definition(s): What is computational thinking?
Despite the popularity and excitement that surround computational thinking programs in public libraries, it

is surprising to note that “there is not one unanimous definition of computational thinking” (Angeli, et al., 2016, p. 49).
Similarly, Brennen and Resnick (2012) note that “there is little agreement on what a definition for computational
thinking might encompass” (p. 2). Even the recently released Libraries Ready to Code web collection (2018) states that
“there is no one single list of the specific concepts, practices, and dispositions included in [computational thinking].”

The very first challenge youth services librarians face when implementing computational thinking programs
is immediate: What exactly is computational thinking? If there is little agreement on a definition and no single list of
concepts to practice, what exactly are librarians meant to be teaching or introducing to their young patrons?

Computational thinking has been described as

• “defining, understanding, and solving problems; reasoning at multiple levels of abstraction; understanding
and applying automation; and understanding the dimensions of scale” (Allan, et al., 2010, p. 1);

• “a creative process that includes understanding concepts, processes, and perspectives of a designer” (Brennan
& Resnick, 2012, p. 2);

• “thought processes involved in formulating problems so their solutions can be represented as computational
steps and algorithms” (Aho as cited in Tedre & Denning, 2016, p. 120);

• “an underlying set of skills foundational to computer science though also transferable to broader
applications” (Braun & Visser, 2017, p. 8);

• “the way that computer scientists think, the manner in which they reason” (Riley & Hunt as cited in
Kaleioglu, Gulbahar, & Kukul, 2016, p. 585);

• “a set of thinking skills that may not result in computer programming (Syslo & Kwiatkowska as cited in
Kaleioglu, Gulbahar, & Kukul, 2016, p. 585);

http://palrap.org/

Pennsylvania Libraries: Research & Practice
Rethinking Computational Thinking for Public Libraries’ Youth Programs

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 77

palrap.org

• and “solving problems, designing systems, and understanding human behavior, by drawing on the concepts
fundamental to computer science” (Wing, 2006, p. 33).

In these examples alone, computational thinking is somehow simultaneously a thought process, a design
process, a set of skills, a problem-solving method, and an application for automation, and may not necessarily result
in computer programming at all. Many words used are computer science jargon such as algorithm or abstraction.

These definitions represent different visions of computational thinking and the computer science jargon used
can be very daunting to anyone outside of the computer science field, including youth services librarians tasked with
facilitating computational thinking for children. Tedre and Denning (2016) note this is a challenge for educators saying
that the “multiple [computational thinking] visions, although inspiring and ambitious, do not agree on what exactly
should be taught about [computational thinking], how to assess whether students have learned [computational
thinking], and who are the main beneficiates of [computational thinking]” (p.120).

Library-Centered Definitions
Initially, the library profession had begun to address this problem of vague and various definitions for youth

services librarians. In Phase II of Libraries Ready to Code, an initiative created from a partnership between Google and
the American Library Association, library and information science professors were tasked with creating a new
curriculum for master of library science students with a focus on computational thinking as a literacy. This would help
close the skills gap that many youth services librarians point to as a reason for their reluctance to facilitate
computational thinking programs (Braun & Visser, 2017). In doing so, professors created a definition that defined it
within the context of a library:

“[Computational thinking] within the context of libraries: youth learn through opportunities to uncover
everyday personal or community problems and develop strategies to solve those problems. Through these
problem-definition, data gathering, and problem-solving steps, they are mentored and coached by library
staff, peers, and community members, and participate in activities that lead to an understanding of their
community and the world around them and the ability to analyze, synthesize, produce, and organize
information. Through these activities, they build decomposition, pattern recognition, algorithms, abstraction,
and automation skills” (Drouillard, 2017).

This was a good attempt to situate this concept into the realm of libraries. However, by the time the Libraries
Ready to Code resource collection was released in June 2018, this definition was gone, replaced with a short description
of computational thinking and links to outside sources: to the classic 2006 Wing article, a Google-sponsored definition,
a “leadership guide,” and a teacher association definition (Libraries Ready to Code, 2018), none of them attempting to
define computational thinking in terms of a public library. This is a huge misstep. Creating a definition that is sound,
specific, and aligns with public library standards and practices is necessary to overcome the obstacles of a vague
definition.

As Denning (2017) would argue, this vagueness is the point. Denning believes that “in attempts to appeal to
other fields besides [computer science], [researchers] offered vague and confusing definitions of computational
thinking…the claims that it benefits everyone beyond computational designers are as yet unsubstantiated” (Denning,
2017, p. 33). Computational thinking was purposely positioned to become a catchall term that seemingly applied to
any field or situation in an effort to make it more appealing outside of the computational science field.

Origins of Modern Computational Thinking
Despite their differences, most definitions harken back to or were influenced by Wing’s pivotal 2006 article

on computational thinking. Wing’s essay is considered an origin point for educators and librarians because she

http://palrap.org/

Pennsylvania Libraries: Research & Practice
Rethinking Computational Thinking for Public Libraries’ Youth Programs

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 78

palrap.org

manages to accomplish two things: She situates computational thinking outside the computer science field, and situates
computational thinking outside of computers themselves.

First, Wing (2006) claims that “computational thinking is a fundamental skill for everyone, not just for
computer scientists. To reading, writing, and arithmetic, we should add computational thinking to every child’s
analytical ability” (p. 33). That notion, that computational thinking, and therefore coding and computer science, are
fundamental to everyone was novel in 2006 and is what myriad researchers and educators have pointed towards when
justifying the need for computational thinking in classrooms, public libraries, and other youth programs. Later, she
added that “someone with the ability to use computation effectively would have an edge over someone without”
(Wing, 2016). This is the origin of computational thinking as a new literacy that is fundamental to everyone and the
impetus for many educators and librarians outside of the computer science field to take up the task of teaching it.

Second, Wing goes so far as to explain that computational thinking is a tool used in everyday life, removing
the notion of computers or computational models completely:

“When your daughter goes to school in the morning, she puts in her backpack the things she needs for the
day; that’s prefetching and caching…At what point do you stop renting skis and buy yourself a pair: that’s
online algorithms. Which line do you stand in at the supermarket?; that’s performance modeling for multi-
server systems” (Wing, 2006, p. 34).

Wing uses computational thinking outside the bounds of computer science or even computer use, claiming it as a
fundamental skill for everyday life. It is little wonder why that belief is so appealing to educators and librarians.
Wanting to be supportive of computational thinking but lacking computer science knowledge, librarians can use
Wing’s “everyday life” approach to create computational thinking programs, developing programs around everyday
challenges like packing a bag. However, is this computational thinking?

Not all researchers think so. The claims that computational thinking benefits fields outside of computer
science or in everyday life are unsubstantiated (Denning, 2017). Denning asks, “Is it really true that any sequence of
steps is an algorithm? That procedures of daily life are algorithms?” (Denning, 2017, p. 34).

Some researchers in the computer science field are uncomfortable with a computational thinking definition
that removes computational models. To some, computational thinking requires the computational model or
automation. The absence of any mention of computational models in Wing’s definition is considered a “mistake… we
engage with abstraction decomposition, data representation, and so forth, in order to get a model to accomplish certain
work” (Denning, 2017, p. 36). The point of computational thinking is specifically to work with these models.

Similarly, Guzdial (2015) recounts pushback against computational thinking at a European workshop. “The
educational psychologists thought it was unbelievable that learning computing would in any way impact the way that
people think or problem-solve in everyday life. Didn’t we believe that once about Latin?” (Guzdial, 2015). This
comparison between computational thinking and the old outdated practice of teaching children Latin is a testament to
how unconvinced some researchers and educators are as to the claims that it can be valuable in everyday life or in
fields outside of computer science.

The Forgotten History of Computational Thinking
To further complicate matters, the myriad researchers and educators who credit Wing with coining the

definition of computational thinking are incorrect. Wing’s article and definition certainly stirred a renewed interest in
computational thinking in 2006, but the term itself dates back to 1980 when Papret used the term in his book
Mindstorms: Children, Computers, and Powerful Ideas (which the LEGO coding tool is named after), to describe a “mental
skill children develop from practicing programming” (Denning, 2017, p.35).

http://palrap.org/

Pennsylvania Libraries: Research & Practice
Rethinking Computational Thinking for Public Libraries’ Youth Programs

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 79

palrap.org

In fact, the mainstream push to develop computational thinking programs in educational institutions already
happened in the 1980s and 1990s. Much of this research is largely forgotten among the current cultural conversation
and research. And perhaps with good reason—many researchers didn’t find evidence that teaching computational
thinking to students was particularly successful (Kafai, 2016). These early attempts at computational thinking in
classrooms “did not deliver on promises. By the mid-1990s most schools turned away from programming” (Kafai, 2016,
p. 26). A lack of historical context forces educators, youth services librarians, and researchers themselves to reinvent
the wheel and could lead to watered-down versions of these preceding programs (Tedre & Denning, 2016).

Programming: Is this computational thinking?
The various visions of and definitions for computational thinking in libraries means there isn’t one “right”

way to offer computational thinking skills. The lack of direction mixed with Wing’s “everyday life” approach has
resulted in an “anything goes” style of programming. From creating games that solve social ills (Martin, 2017) to simply
making guacamole with your family (Libraries Ready to Code, 2018), youth services librarians are creating programs
based on their own interpretations of computational thinking definitions and their skillsets (or lack thereof). This had
led to a heavy reliance on specialized tools and websites (Braun & Visser, 2017, p. 18), as well as the popularity of
“unplugged” computational thinking programs, both of which have researchers questioning their validity as
computational thinking programs.

Reliance on Tools
Youth services librarians who lack the skill set, but still want to facilitate computational thinking, have heavily

relied on popular block coding websites and robotics toys that promise to do the computational thinking facilitating
for them (Braun & Visser, 2017).

Websites such as Hour of Code and Scratch use simple block code, a visual programming language, where
children drag and drop puzzle pieces into the desired order (an algorithm) to move a character across the screen. They
are considered easy for both children to use and librarians to learn, but some researchers believe they oversimplify
“coding and thus using these tools detracts from the ability of learning to grasp complex programming concepts”
(Braun & Visser, 2017, p. 35). These visual programming languages bear little resemblance to the programming
languages used in professional settings.

Other popular tools are robots, such as Bee-bots and Cubettos. Robots serve as a visual expression of
computational thinking (Prato, 2017), have an obvious coolness factor (Braun & Visser, 2017), and as Duill (2012)
describes, feed the “humanoid robotic fantasies children derive from entertainment media” (p. 96).

Some of these robots use an app which helps to demystify computational thinking and coding skills by
blending the digital and physical world (Braun & Visser, 2017, p. 23), helping children see how their computational
thinking efforts affect objects in front of them. Dash and Dot robots, for instance, use a block code app so children are
working on a screen (the digital world) and seeing their robot move in front of them in the real world.

Some robots are considered “tangible tech” such as Bee-bots and Cubettos, which do not use a computer or
app to code; no screen is necessary. Instead, the robot features a series of buttons or manipulating pieces that are put
into an algorithm. A child presses a button, and the robot completes the sequence in the code.

While these tools make life easier for youth services librarians and may help attract children to programs, the
focus on these tools can be problematic, according to Braun and Visser (2017). This focus “shows that library staff are
less likely to acknowledge the learning accomplished through these activities than the tools that are used in the
learning” (Braun & Visser, 2017, p. 18). The novelty of the toys takes precedence over learning outcomes.

http://palrap.org/

Pennsylvania Libraries: Research & Practice
Rethinking Computational Thinking for Public Libraries’ Youth Programs

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 80

palrap.org

Similarly, Duill (2012) notes that toys such as the Bee-Bots are “cognitively a ‘black box’ with buttons…their
main use is in teaching left/right turns and distance estimation, which are more simply and economically incorporated
in pencil and paper mazes” (p. 96). Duill believes that because such tools are closed to creation, they offer very little
computational thinking value.

Both Duill (2012) and Braun and Visser (2017) call for a more constructionist approach, where children create
an object or project. However, they fail to recognize that the need for such tools in the first place is that they offer
librarians an easy way to introduce computational thinking skills. Criticism that such programs are mere gateways
(Braun & Visser, 2017) place youth services librarians in a dilemma with their programming: They are encouraged to
use these tools because they don’t know enough about computational thinking (Prato, 2017), but the critics claim the
programs aren’t enough (Duill 2012; Braun & Visser, 2017; Denning, 2017).

Unplugged Programs
Unplugged activities take their lead from Wing’s (2006) notion that computational thinking can be used in

everyday life situations. These programs include no technology or computers and often focus on pattern recognition,
solving problems through challenges, or creating step-by-step instructions. They serve as a “low-stakes entry point for
library staff just learning how to integrate computational thinking activities” (Braun & Visser, p. 18). Most of these
unplugged activities take the form of algorithm design. For instance, the Libraries Ready to Code website (2018)
describes a computational thinking program where families are challenged to “create their own recipe for
guacamole…they are finding patterns in the recipe and abstracting ideas to craft their own variations of the original.
The step-by-step recipes they create are similar in flow to the algorithms a computer follows” (Haines, 2018).

This everyday life algorithm is reminiscent of Wing’s (2006) assertion that computational thinking could be
used to pack a bag or choose a line at the grocery store. However, Denning (2017) asserts that a computational model
is necessary for an algorithm. An algorithm “is not any sequence of steps, but a series of steps that control some abstract
machine or computational model without requiring human judgement. Computational thinking includes designing
the model, not just the steps to control it” (Denning, 2017, p. 33). An everyday life algorithm, such as making
guacamole, requires human judgement, which has never been considered a part of an algorithmic step.

Are these two program examples, a reliance on a tool such as a black-box robot and making an algorithm out
of a recipe, computational thinking? Yes and no, depending on which research one subscribes to. A definitive answer
is impossible without a widely agreed-upon definition to draw from. While library blogs and workshops extol the ease
of use of such tools, the academic literature criticizes them for not being effective or impactful enough, creating a major
conflict and challenge for youth services librarians.

Evaluations: Is this working?
As we’ve seen, the vague and varied definitions of computational thinking have led to challenges in

developing computational thinking programs for public libraries. It is little surprise then to find that these same issues
have left librarians unsure of how to assess whether or not their programs have been successful (Denning, 2017). To
complicate matters further, the public library’s role as an informal learning environment also acts as a barrier towards
traditional modes of assessment.

The literature on computational thinking offers very little in reference to assessments. Benitti found that out
of more than 70 papers on computational thinking, only 10 provided measurements of computational thinking in
programs (cited in Toh, Causo, Tzuo, Chen & Yeo, 2016, p. 148).

http://palrap.org/

Pennsylvania Libraries: Research & Practice
Rethinking Computational Thinking for Public Libraries’ Youth Programs

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 81

palrap.org

Skill vs. Knowledge
First, the various definitions of computational thinking refer to it as both a “concept” and a “skill.” These

terms are not interchangeable. How a librarian would evaluate a concept or knowledge is much different than how
one might evaluate a skill. For example, Sullivan & Bers (2015), used a one-on-one style assessment on students in
preschool through second grade who received training with a KIWI robot. Working with a researcher, they were tested
for skill recall. Researchers asked, “What part should I use if I want my robot to turn its light on?” and the child would
receive a point for correctly identifying five different robot parts, including three sensors, a light output, and the motor.
It was reported that the youngest students “struggled with mastery of the robotic parts” (p. 17) and were not successful
on this assessment. Does failing to learn this specific skill of pressing a sensor mean that the children did not practice
or learn computational thinking concepts, such as abstraction or decomposition? The assessment isn’t able to test for
that.

Likewise, evaluations that test for knowledge can give equally dubious results. In Brennan & Resnick (2012),
measurement was conducted via product-based assessments. Researchers looked at Scratch coding projects created by
children ages 8-17 and asked questions about their experiences. In one example, an interviewer asked a student, “How
does this work?” The student was unable to explain any part of it, revealing that he had seen a similar project on a
website and copied the code. While this student lacks the knowledge to explain how his project works, it could still be
argued that he used computational thinking skills by altering the block in the project that he had taken from the
internet.

Traditional Library Models of Assessment
Ironically, the informal learning setting, one of the very elements that makes public libraries such an ideal

computational thinking environment (Braun & Visser, 2017), also makes it difficult to evaluate and assess
computational thinking programs for success. Youth services librarians do not grade, and are not beholden to
education standards or tests. Children can practice computational thinking “without the pressure of failing…you are
not being graded in any way, so it is a safe environment for [patrons] to experiment” (Suramaniam cited in Snelling,
2018). But this also means youth services librarians do not have tools to evaluate whether or not their programs are
effectively facilitating computational thinking.

In fact, many library programs are not assessed for effectiveness. Many public libraries used output-based
assessments, relying on participation numbers to determine whether or not a program was successful (Matthews, 2010).
In recent years, many libraries have moved towards an outcome-based assessment, relying on surveys and focus
groups that ask participants to comment on the content or the goals of the program itself (Cole, Walter, & Mitnick,
2013). In the former method, 50 children at a program may be deemed a great success, but it would be unclear whether
or not the program was effective in relaying any educational elements. In the latter, only 5 kids may come to a program,
but if one child commented that the program had value or that he met his personal goal for the program, then that
program could be considered a great success even though the participation was low.

Considering the lack of much of a prior history of program evaluation, the assessment limitations of an
informal learning environment, and the fact that researchers are unsure of how to assess computational thinking, youth
services librarians again face another obstacle of determining whether their programming is successful in facilitating
computational thinking.

Recommendations
A key element in facilitating successful and effective youth computational thinking programs in public

libraries is framing them squarely within the context of the public library itself. While there may not be one widely

http://palrap.org/

Pennsylvania Libraries: Research & Practice
Rethinking Computational Thinking for Public Libraries’ Youth Programs

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 82

palrap.org

accepted definition, method of execution, or assessment strategy (and any that might be created would most likely be
done for the benefit of schools, and not the unique setting of a public library), an authoritative body such as the
American Library Association, the Association of Library Services to Children, or the Libraries Ready to Code initiative
could address these issues by creating their own definition framed around public libraries as a base on which youth
services librarians could confidently build their programming. The fact that the Libraries Ready to Code initiative shied
away from interpreting a computational thinking definition in favor of pointing to several others, none of which
mention public libraries, is a big misstep.

Further, public libraries’ foray into computational thinking should play to the libraries’ strengths. It is the
unique aspects of a public library that make it such an ideal place for computational thinking programs (Braun &
Visser, 2017, p. 2). This includes its existing technology efforts, informal learning environments, its collections, and its
already-successful programs.

Technology and The Digital Divide
A definition of computational thinking for public libraries must include the mention of a computational model

(Denning, 2017). Technology should be utilized when possible in programs. First, if computational thinking is
understood to be an “underlying set of skills” (Braun & Visser, 2017, p. 4) or foundation for coding, robotics, and
computer science, then it can be believed that practicing with computational models and tools should also mean
practicing computational thinking. By creating a definition that focuses on these skills, the thinking concepts behind
computational thinking may naturally follow.

Furthermore, while the “everyday life” approach makes things easier for youth services librarians, it fails to
tackle the digital divide, which is one of the other reasons public libraries were identified as an ideal place for
computational thinking (Braun & Visser, 2017). Public libraries are no strangers to the term “digital divide,” which
describes the unequal access to computer and technology (Reich & Ito, 2017). Teaching computational thinking,
introducing children to the tools and programs used, and teaching the skills necessary for computer science tackles the
digital divide by offering equitable access to the tools, ideas, and concepts necessary to create technology, ensuring
that all voices, especially those who are underrepresented in the computer science fields, can be heard.

Despite the criticism that tech tools like robotic toys and coding game websites are not effective at teaching
computational thinking (Braun & Visser, 2017; Duill, 2012), youth services librarians should make use of them,
especially as they themselves are learning how to facilitate these new types of programs. It also introduces these
technology pieces to children who, in the case of underserved children including those who are underrepresented in
computer science fields, may not see them elsewhere, acting as another deterrent to the digital divide.

Utilizing technology and computers in computational thinking programs, of course, means youth services
librarians will have to learn to become more comfortable with technology, coding, and robotics. Libraries Ready to
Code Phase II made some great efforts in this area by designing a curriculum for computational thinking that would
be taught to prospective librarians during their master of library science studies. This way, computational thinking
would be embedded into librarianship itself, establishing it as an essential concept or skill for the profession. Hopefully,
such curriculum will not only provide the “what” and “why” of computational thinking, which, as can be seen from
current research, can get tricky, but also provide training on the basic fundamentals of computational thinking and
introduce practical skills such as coding with program languages. Youth services librarians do not need to be
persuaded to teach patrons computational thinking by providing numerous reasons on why it is important; they
simply need training on all of the computer science concepts that computational thinking should be leading towards.

Similarly, national and state library associations should consider offering similar workshops for youth
services librarians that focus on practical technology skills that can be used to facilitate computational thinking

http://palrap.org/

Pennsylvania Libraries: Research & Practice
Rethinking Computational Thinking for Public Libraries’ Youth Programs

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 83

palrap.org

programs. Youth services librarians will also need the support of their individual libraries, who must find the time and
budget necessary for librarians to learn, design, and facilitate these new types of programs.

Outcome Based Assessments
As an informal learning environment, public libraries have often struggled with creating assessments for an

environment where experimenting and failing are celebrated (Snelling, 2018). As libraries move towards outcome-
based evaluations in other areas, these same types of evaluations may help create successful stories to share about
programming. Outcome-based evaluations offer individual assessments by encouraging children to make goals, and
help libraries determine the impact of their programming by collecting stories and anecdotes about the value of the
program.

Building on Library Strengths
While much of the research regarding computational thinking focuses on the notion of problem solving,

research fails to think about how to initiate and inspire solutions to these problems. Libraries have the key to that
solution: books.

In 2007, Newbery medal winner Neil Gaiman visited China for its first-ever state-sponsored science fiction
convention. When asked why the government was supporting the convention, a party official revealed that it was
actually a well-researched initiative towards technological innovation. Frustrated with their tech industry’s lack of
original ideas, the Chinese government sent researchers to tour facilities at Microsoft, Google, and Apple. What they
found was surprising: many of the employees coming up with innovative new ideas had a deep love for science fiction
(Gaiman, 2016). Elon Musk, Jeff Bezos, Mark Zuckerberg, among other famous names in computer science also count
themselves as huge science fiction fans. In fact, product managers at Facebook were required to read Neal Stephenson’s
1992 novel Snow Crash, as it was used by Ben Narasin to develop theories about the commercialization of the early
internet (Shenoy, 2016).

Working with books is within the realm of even the least tech-savvy of youth services librarians. Encouraging
thought and discussion while using science fiction books like the ones that inspired our current computer science
celebrities, will help breed innovation and encourage the “feedback loop between science fiction and technological
fact” (Shenoy, 2016) in the future.

In addition, already established successful programs such as LEGO Clubs or summer learning activity sheets
could be adapted to add elements of computational thinking into them. Challenging builders at a Block Party program
to build a house for a Bee-bot that must drive into his new house, or adding a game on the Hour of Code website as an
activity option on their summer learning logs, will give youth services librarians a sense of comfort and confidence.
Working within a familiar framework they know is already successful will give librarians a sense of ownership over
the project, and encourage them to continue to learn and build on their successes.

Finally, more research needs to be done pertaining to computational thinking specifically in a public library
setting. The majority of research is done for classrooms, a strange irony given the fact that public libraries were tapped
to do computational thinking because only 40% of public schools offer computational thinking programs (Prato, 2017).
Research specifically targeting public libraries would ensure that the methods that rise as best practices are best
practices for public libraries and not adapted schoolroom methods.

http://palrap.org/

Pennsylvania Libraries: Research & Practice
Rethinking Computational Thinking for Public Libraries’ Youth Programs

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 84

palrap.org

Conclusion
The state of computational thinking research is still new and rather messy. Without an official definition of

computational thinking from the computer science field, various visions of what computational thinking is and what
it should look like for youth programming have emerged. With no foundation to base programs and methods on and
no clear vision of what outcomes should be, youth librarians have faced several challenges in creating, implementing,
and assessing computational thinking programs.

Ultimately, computational thinking for public libraries should be designed around their unique informal
learning environment and existing technology services. An authoritative body such as the American Library
Association or the Libraries Ready to Code initiative should help create this definition and framework so that youth
services librarians can use it as a foundation for their own programs.

Further, youth services librarians should create computational thinking programs around their strengths,
such as their collections that may inspire innovation or their already-successful programming. This will give youth
services librarians ownership of their computational thinking programs and encourage them to learn more about
computational thinking.

References
Allan, W., Coulter, B., Denner, J., Erickson, J., Lee, I., Malyn-Smith, J., & Martin, F. (2010). Computational thinking for youth.

Retrieved from stelar.edc.org/sites/stelar.edc.org/files/Computational_Thinking_paper.pdf

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum

framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), 47-57. Retrieved

from www.j-ets.net/ETS/journals/19_3/6.pdf

Braun, L. & Visser, M. (2017). Ready to code: Connecting youth to CS opportunity through libraries. Libraries Ready to Code.

Retrieved from www.ala.org/advocacy/sites/ala.org.advocacy/files/content/pp/Ready_To_Code_Report_FINAL.pdf

Brennan, K. & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Boston,

MA: American Educational Research Association. Retrieved from scholar.harvard.edu/kbrennan/publications/new-

frameworks-studying-and-assessing-development-computational-thinking

Cole, N., Walter, V., & Mitnick, E. (2013). Outcomes + outreach. Public Libraries, 52(2), 38-43. Retrieved from

publiclibrariesonline.org/2013/05/outcomes

Denning, P. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, (60)6, 33-29.

doi:10.1145/2998438

Drouillard, C. (2017). Lecture on computational thinking. Personal Collection of C. Drouillard, Valdosta State University, Valdosta,

GA.

Duill, M. (2012, September). Reversing robotic regression: Why our culture rejects robotics in school. In D. Obdrzalek [Ed.], RiE

2012: 3rd international conference on robotics in education. Prague, Czech Republic: MatfyzPress. Retrieved from

www.ksi.mff.cuni.cz/rie2012/proceedings/2012RiE-13.pdf

Gaiman, N. (2016). The view from the cheap seats. New York, NY: HarperCollins

Guzdial, M. (2015, July 13). Growing CS ED through schools of ED, and CT is unlikely: Report from Oldenburg [Blog post].

Retrieved from computinged.wordpress.com/2015/07/13/growing-cs-ed-through-schools-of-ed-report-from-oldenburg

Kafai, Y. (2016). From computational thinking to computational participation in K-12 education. Communications of the ACM, 59(8).

doi:10.1145/2955114

http://palrap.org/
http://stelar.edc.org/sites/stelar.edc.org/files/Computational_Thinking_paper.pdf
https://www.j-ets.net/ETS/journals/19_3/6.pdf
https://www.j-ets.net/ETS/journals/19_3/6.pdf
http://www.ala.org/advocacy/sites/ala.org.advocacy/files/content/pp/Ready_To_Code_Report_FINAL.pdf
https://scholar.harvard.edu/kbrennan/publications/new-frameworks-studying-and-assessing-development-computational-thinking
http://publiclibrariesonline.org/2013/05/outcomes/
http://dx.doi.org/10.1145/2998438
http://www.ksi.mff.cuni.cz/rie2012/proceedings/2012RiE-13.pdf
https://computinged.wordpress.com/2015/07/13/growing-cs-ed-through-schools-of-ed-report-from-oldenburg/
http://dx.doi.org/10.1145/2955114

Pennsylvania Libraries: Research & Practice
Rethinking Computational Thinking for Public Libraries’ Youth Programs

Vol. 6, No. 2 (Fall 2018) DOI 10.5195/palrap.2018.188 85

palrap.org

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a systematic research review.

Baltic Journal of Modern Computing, 4(3), 583-596. Retrieved from www.bjmc.lu.lv/contents/vol-42016-no-3

Libraries Ready to Code (2018). The what and why of computational thinking. Retrieved from

www.ala.org/tools/readytocode/computational-thinking

Martin, C. (2017) Libraries as facilitators of coding for all. Knowledge Quest, 45(3), 46-53. Retrieved from

files.eric.ed.gov/fulltext/EJ1125376.pdf

Matthews, J. (2010). Evaluating summer reading programs. Public Libraries, 49(4), 34-40. Retrieved from

publiclibrariesonline.org/2013/05/evaluating-summer-reading-programs-suggested-improvements

Prato, S. (2017). Beyond the computer age: A best practices intro for implementing library coding programs. Children and Libraries,

15(1), 19-21. Retrieved from journals.ala.org/index.php/cal/article/view/6238

Reich, J. & Ito, M. (2017) From good intentions to real outcomes: Equity by design in learning technologies. Irvine, CA: Digital

Media and Learning Research Hub. Retrieved from clalliance.org/wp-content/uploads/2017/11/GIROreport_1031.pdf

Shenoy, G. (2016, October 21). India needs to read more science fiction to imagine and create. Factor Daily. Retrieved from

factordaily.com/india-read-more-scifi-imagine-create

Snelling, J. (2018). Don’t stress about coding: Focus shifts to teaching problem solving not computer skills. School Library Journal.

Retrieved from www.slj.com/?detailStory=dont-stress-coding-focus-shifts-teaching-problem-solving-not-computer-skills

Sullivan, A. & Bers, M. U. (2015). Robotics in the early childhood classroom: Learning outcomes from an 8-week robotics curriculum

in pre-kindergarten through second grade. International Journal of Technology & Design Education, 26(1), 3-20.

doi:10.1007/s10798-015-9304-5

Tedre, M. & Denning, P. (2016, November). The long quest for computational thinking. In Proceedings: 16th Koli Calling

International Conference on Computing Education Research. Koli, Finland: ACM. Retrieved from

denninginstitute.com/pjd/PUBS/long-quest-ct.pdf

Toh, L., Causo, A., Tzuo, P., Chen, I., Yeo, S. (2016) A review on the use of robots in education and youth children. Journal of

Educational Technology & Society, 19(2), 148-163. Retrieved from www.j-ets.net/ETS/journals/19_2/12.pdf

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 22-25. doi:10.1145/1118178.1118215

Wing, J. (2016, March 23). Ten years later. [blog post]. Retrieved from www.microsoft.com/en-us/research/blog/computational-

thinking-10-years-later

http://palrap.org/
https://www.bjmc.lu.lv/contents/vol-42016-no-3/
http://www.ala.org/tools/readytocode/computational-thinking
http://files.eric.ed.gov/fulltext/EJ1125376.pdf
http://publiclibrariesonline.org/2013/05/evaluating-summer-reading-programs-suggested-improvements
https://journals.ala.org/index.php/cal/article/view/6238
https://clalliance.org/wp-content/uploads/2017/11/GIROreport_1031.pdf
https://factordaily.com/india-read-more-scifi-imagine-create/
https://www.slj.com/?detailStory=dont-stress-coding-focus-shifts-teaching-problem-solving-not-computer-skills
https://doi.org/10.1007/s10798-015-9304-5
https://doi.org/10.1007/s10798-015-9304-5
http://denninginstitute.com/pjd/PUBS/long-quest-ct.pdf
https://www.j-ets.net/ETS/journals/19_2/12.pdf
https://dl.acm.org/citation.cfm?id=1118215
https://www.microsoft.com/en-us/research/blog/computational-thinking-10-years-later/

	Rethinking Computational Thinking for Public Libraries’ Youth Programs
	Introduction
	Definition(s): What is computational thinking?
	Library-Centered Definitions
	Origins of Modern Computational Thinking
	The Forgotten History of Computational Thinking

	Programming: Is this computational thinking?
	Reliance on Tools
	Unplugged Programs

	Evaluations: Is this working?
	Skill vs. Knowledge
	Traditional Library Models of Assessment

	Recommendations
	Technology and The Digital Divide
	Outcome Based Assessments
	Building on Library Strengths

	Conclusion
	References

